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Abstract. Current models of human motor learning and control typically employ continu-
ous (or near continuous) movement commands and sensory informatiwvevelpresearch
suggests that voluntary motor commands are issued in discrete-time submts/ehene

is also reasonable support for the hypothesis that human sensonjeaxgeis episodic

as well. These facts have motivated the development of a learning modeintipédys
discrete-time sensory and motor control events. We present this modéidogeéth the
results of initial simulation of robot control. The results show that the leartiiagtakes
place is adaptive and is robust to a variety of conditions that many traditboméfollers

are not capable of handling, including random errors in the actuatdrsearsors, random
transmission time delays, hard nonlinearities, time varying system behavioun&nown

structure of system dynamics.
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1. Introduction

When mathematically modeling human motor learning and ognitris common to make a
number of assumptions. Sensory information and controlmétion are usually considered to
be continuous in time. Perception and movements are ofteressed in terms of world coor-
dinates. In many cases, velocity, acceleration, and hidgeegvatives of position are explicitly
represented in the motion planner. And finally, kinematates are assumed to be sensed at
high resolution. While models based on these assumptiondesamibe some aspects of human
movement, none of these assumptions has been proven. limoaddnese models are typi-
cally used only to model and predict a limited class of mowveine.g., reaching movements).
In this paper, we propose an alternative motor learning notl@s model employs as work-
ing assumptions that both motor commands and sensory iaf@mare passed in an episodic
fashion, quantized in time.

Evidence for discrete time motor commands, also known asisubments, is widespread
and accounts for a large number of disparate phenomena iorrhehavior. Observations
of slow finger movements (Vallbo & Wessberg, 1993), eye sdesdCollewijn et al., 1988),
tracing constant curvature paths (Abend et al., 1982) jalanovements (Woodworth, 1899;
Crossman & Goodeve, 1983; Doeringer, 1999), infant reaciingements (Hofsten, 1991),
ballistic movements (Morasso & Mussa-lvaldi, 1982), moeats of recovering stroke pa-
tients (Krebs et al., 1999; Rohrer et al., 2004), and movesneqjuiring high accuracy (Milner,
1992) are all consistent with a theory of submovements. T¢wa&te-time nature of movement
Is evident not only in movement kinematics, but also in tlee®bmyograph (EMG) signals of

agonist and antagonist muscles (Vallbo & Wessberg, 1993).



Evidence for the discrete nature of sensory experiencesiis subtle. The concept was
originally proposed by William James (1890) and more rdgantStroud (1956). A number
of experiments support a theory of discrete sensory expezge A striking phenomenon that
suggests discrete sensory experience is the wagon whesbil under steady light. Due to
the rapid series of photographs of which movies are compasisccommonly observed that a
spoked wagon wheel appears to rotate slowly backward waliieg rapidly forward. Interest-
ingly, the same effect can also be observed under steady(Rghves et al., 1996), suggesting a
periodic sampling mechanism in human vision. In anotheegrment, two lights that blinked
with a slight delay were occasionally perceived to flash #iameously (Wertheimer, 1912),
an occurrence that was suggested to be a function of the pélasenship with alpha (8-12
Hz) cortical rhythms (Gho & Varela, 1988). Other observasidhat suggest discrete sensory
experiences are the sharp dependence of perceived causalielay times and periodicities
in reaction times (VanRullen & Koch, 2003). A more in-deptkiegv of the case for discrete

perception is made in Koch (2004).

2. An event based motor learning agent

Because motor commands and sensory signals in the modelsabdiscrete intervals, they can
also be termed motor and sensory “events,” and any modeloyimplthem can be described
as “event-based.” For the sake of implementation, we dpeel@n instance of an event-based
learning agent in which several additional limitations em@osed. (1) Motor commands and
sensory information are not only quantized in time, but dse aoarsely discretized in magni-
tude. (2) Motor and sensory events of different magnitudesansidered categorically unre-

lated. That is, extrapolation and interpolation do not eaxplicitly. (3) Motor and sensory



events are serially registered in the motor learning agent.

Learning occurs by repeated observation of sensory andat@vents. The block dia-
gram in figure 1 describes the process in detail. During lagr(as in an infant), the motor
control system issues random commands and observes theéngesensory events. As pat-
terns are observed repeatedly, they are recorded and exitenlis growing library of patterns

constitutes the motor controller’s “experience base.”

3. Simulation

Consider an implementation of the learning model outlineayabn a simulated rotary pointer
robot. Possible sensory events for the pointer robot con$iposition sensing in X0bins,
resulting in 36 distinct states (for convenience, numbdrédrough36). Possible command
events for the pointer are 1@otation clockwise R) and and 10rotation counterclockwise.j.

An example of how the learning model operates shows the giitypbf the approach.
One sample excerpt of an event history resulting from randmwements might consist of
3R4R5L4R5L4L3L2. The learning agent would break the event history into spatterns,
3R4, 4R5, 5L4, etc. When these patterns are encountered again in subseguerpts of the
event history, they will be extended, producing patterchsas3R4R5, 4R5L4, 5L4R5R6.

A simulation of the learning agent using the pointer robatemn was implemented in

C++. Six conditions were simulated:

Simple system. Measurement statels-36 and command even® andL as described previ-

ously.

Hard stop. Same as the simple system, but with a “hard stop” inserte, gr6hibiting con-



tinuous rotational movement.

Sensory state scramble. Same as the simple system, but after 5000 trials, the nuahéalzels
for sensory states are renanteeB6 in random order, making all prior learning inappli-

cable and misleading.

Command reversal. Same as the simple system, but after 5000 trials the comniewisse”;
anR command producesunterclockwise motion and ath. command producesockwise

motion.

Random error. Same as the simple system, but with up tcobrandom error added to each
command event, resulting in movements of betweeartsl 15. With measurement res-
olution limited to 10, the error will express itself as measurement states bathgre

skipped or unchanged when a command is issued.

Random delays. Same as the simple system, but each command event has a 56ee dia
being delayed and executed at the instantxd command is issued. As a result, when

a command is issued, zero, one, or two command events maallgtake place.

In each case, the learning agent generated random commemis end attempted to pre-
dict the results before executing the command. Predictane generated by searching through
previously observed patterns for instances containingtopoof the current event history. Pat-
terns that matched a longer portion of the event history fa@red heavily. Patterns that were
observed recently or that had been observed many times \geréagored. Once a pattern was
selected a prediction was obtained by reading “what hagpeegt” when the situation had
been encountered previously. In each condition, the legragent began with a clean slate;
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that is, there were no previously observed experiences whach to build. As a result, lack
of prior experience made it impossible for the agent to adferediction in some cases. These

were counted as unsuccessful predictions.

4. Results

During simulation of each of the six conditions, the leagnagent generated a database of
patterns. Typical patterns observed wg6eR 17 R 18 R 17 L 18 R 19 (observed 6 times),
25R 26 R27 L 26 L 25 R 26 (observed 8 times), an2d2 R 23 L 22 R23L 22 L 21
(observed 11 times). In the case of the simple system, adab@il55 repeated patterns were
observed, occupying 599 kilobytes of memory. The longetiepas observed included five
movement events, a limit imposed by the software, rather byathe inherent function of the
learning agent. On average, patterns contained betweed & mmovement events. Simulating
10,000 trials for one condition took approximately two niggi Given that the simple system
was learned within the first 2000 trials, only 24 seconds weqglired to learn the system’s
dynamics completely.

The results of the simulations are shown in figure 2. As showthe plot, the learning
agent achieved 100% accuracy in the simple system aftertB@@) The learning agent showed
similar performance in the presence of a hard stop. In babelronditions, the performance
of the system is deterministic, allowing correct predici@t every time step.

Scrambling the sensory state labels changed the systerarherdally, making the prob-
ability of encountering a previously observed pattern sniagarning essentially began from
scratch, and the initial learning transient was repeateat atrambling. Reversing the direc-

tions of the commands resulted in a marked decrease in pafare initially, but the agent



recovered within 4000 trials after that and predicted tise 1800 trials perfectly.

The introduction of random noise into the movement ampéitathde perfect prediction
impossible. The noise amplitude exactly correspondeddadbolution of the position mea-
surement, 10 As a result, knowledge of the current position allowed prtsah the subsequent
position with an accuracy of only 50%. With a longer eventdng it was possible to increase
the accuracy, but only to a certain extent. The learning egegan with a prediction accuracy
slightly higher than 50%, and gradually it increased to €.

Random time delays introduced the possibility that zero, @néwo command events
might be executed at once. With a 50% probability of delagrgtgiven time step there was a
25% chance that no command would be executed, a 25% chandeoheommands would be
executed simultaneously, a 25% chance that the previousheoich alone would be executed,
and only a 25% chance that the current command alone woulddmeied. As a result, even
once the behavior of this simple system is learned, only a 86étess rate can be expected
with no knowledge of prior events. However, with a complatewledge of prior events, it was
possible to infer whether the prior command event had beeoutad, allowing a prediction
accuracy of 50%. The learning agent began with predictienracy slightly higher than 25%,

and that accuracy climbed to just over 45% after 10,000Cstrial

5. Discussion

The computational requirements of the learning agent werdest. Although the system sim-
ulated was simple, the time required to learn its dynamitlg s less than 30 seconds and
data storage requirements were almost negligible (j1MByvé¥er, we anticipate that both the

learning time and the storage requirements will increaperantially with the number of pos-



sible sensory and command events. Extending the learnet &g more complicated systems
may require strategies to limit the number of possible esjemtto introduce new sensory and
motor events gradually.

It is worth noting that the prediction tasks demonstrateck fere nontrivial. The five
conditions contained instances of hard nonlinearitiesmatic time variance, large stochastic
movement error, and nondeterministic time delays, any dnéhach can impose insurmount-
able challenges for certain learning algorithms. Howetrezy are challenges that the human
motor learning mechanism routinely faces and successiudlycomes without difficulty. Taken
together, they constitute something of a proving groundafor model of motor learning pur-

porting to describe that of a human.
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Figure 1. Learning agent operation. The learning agent identifies its dynamics and those of its environment by

randomly generating patterns and noting repeated occurrences. ltinitially observes its current state, generates
a random input, and then observes the resulting state. If it is a pattern that it has not encountered before,
it records the pattern in memory and repeats the process. If the pattern has been previously observed, the
agent notes the observation and then extends the pattern by generating another random input. In this way,
patterns of increasing length are recorded as training progresses.
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Figure 2. Simulation performance. Six different conditions were imposed: the simple system (bold solid line),
the system with a hard stop (dotted line), the system with scrambled sensory state labels (fine solid line),
the system with a command reversal after 5000 trials (fine dotted line), the system with randomness in the
movement amplitude (dashed line), and the system with a random time delay (dash-dot line).
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